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In this paper, a machine learning approach for processing solar spectral data was developed. Its
performance was demonstrated using the example of the limb solar flare on July 17th, 1981. The
results indicated that machine learning can be effectively utilized to transform between differently
digitized spectra, fill gaps in unique experimental data, and undertake spectrum cleaning. Specifi-
cally, convolutional neural networks were devised to transform between reflective and transmissive
scans of a solar flare spectrogram. This can be a convenient technique for treating the spectrograms
of unique solar events, most notably increasing the proportion of observational spectra that can be
further analyzed. Namely, in subsequent research, we will be able to confidently incorporate data
such as that captured on the edges of spectrograms, which was previously deemed insufficiently
reliable due to limitations of available processing techniques. This will consequently increase the
number of spectral lines studied for certain observed events, which is paramount for constructing
physical models, as the spectral peculiarities are expected to manifest consistently across different
spectral lines.

The developed approach also notably facilitates the detection and removal of impurities in the
spectrograms. Previously, each distinct feature in the spectra was manually scrutinized to check its
integrity in order to be excluded if identified as an impurity, such as a scratch or a dust particle.
By employing the suggested protocol for treating the spectrogram, which includes scanning the
spectrogram using multiple distinct techniques and then leveraging machine learning for comparison,
the process of excluding impurities can now be automated. Furthermore, the spectrum areas affected
by such exclusions can be restored, enabling further analysis.

Key words: Solar flare spectra, astronomy image processing, GPU computing, astronomy data
analysis, spectroscopy.
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I. INTRODUCTION

Unique spectroscopic measurements, such as those ob-
tained from limb solar flares or prominences, present sig-
nificant challenges in terms of data preservation for fu-
ture analysis. These events are rare and cannot be repro-
duced, and therefore the measurements obtained from
them are valuable and irreplaceable. The spectra of such
events can provide insight into the physical processes and
conditions in extreme environments, such as the corona
of the Sun.

Photographic plates and films remain a valuable tool
for capturing and analyzing high-resolution spectro-
scopic data in various scientific fields [1–3]. For exam-
ple, the Horizontal Solar Telescope at the Astronomical
Observatory of Taras Shevchenko National University of
Kyiv still uses photoplates to capture the spectrum of
solar flares and prominences, due to their large photo-
sensitive area of up to 180 by 240 mm [4, 5]. It should
be noted that the mentioned area of 180 by 240 mm is
approximately an order of magnitude larger than that of
typical full-frame sensors (36 by 24 mm) and specialized
CCD sensors such as E2V-250 (42 by 42 mm) [6].

There are several ways to digitize spectra captured
on photoplates and photofilms, including scanned im-
ages, digitized photoplates, and digitized photofilms [7–
9], which can include complex post-processing pipelines

[10]. The choice of the digitization method depends on
the specific requirements of the research, such as the de-
sired resolution, signal-to-noise ratio, and the size of the
area imaged. Generally, scanned images provide the high-
est resolution and the largest dynamic range, while dig-
itized photoplates and photofilms provide a convenient
and low-cost alternative. While some digitization meth-
ods can be better-fit than other, changing the digitization
method can often be technically challenging, especially
when working with such complex systems as the Echelle
spectrograph of the Horizontal Solar Telescope. During
digitization process, the noise and/or artifacts can occur,
which can be dealt with by introducing specific models
for such noises [11, 13]. For instance, in [12] the portions
of image related to the reflected and transmitted rays
were separated using the measurements in multiple po-
larizations and applying an encoder-decoder-type neural
network.

Spectroscopic measurements, including those captured
on photoplates, can now be processed with improved ac-
curacy thanks to advancements in technology and the
integration of machine learning (ML) [14–17]. Machine
learning is a branch of artificial intelligence concerned
with the design and development of algorithms that can
learn from and make predictions on data. Machine learn-
ing has emerged as a powerful tool in the field of com-
puter science, and its applications in image processing
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and spectroscopy have been rapidly growing [18–20]. ML
algorithms can use statistical models to analyze and
identify patterns in large amounts of data, which allows
them to make predictions and generalizations based on
this information with a high level of accuracy and speed.
Moreover, modern research has also proposed the meth-
ods for applying machine learning to limited amounts of
data [21].

In spectroscopy, the application of ML algorithms
has been relatively recent, but is already showing great
promise [22–25]. In particular, ML has found success in
improving image quality and removing noise, as well as
enhancing images by increasing their resolution or re-
moving artifacts [26, 27]. Convolutional neural networks
(CNNs) have proven particularly effective for these tasks,
and have been applied to a wide range of image data,
from natural images to medical imaging [28, 29]. These
capabilities make ML a valuable tool in spectroscopy,
specifically with regard to its ability to transform be-
tween differently digitized spectra, and fill the gaps in
unique experimental data [30–32]. This study employs
machine learning to transform reflective scans into trans-
missive scans and vice versa, aiming to identify whether
reflective scans can provide additional insights for pro-
cessing transmissive scans and detecting spectral con-
tamination.

II. MATERIAL

The main goal of this research was to enhance the ac-
curacy and precision of processing unique spectral data,
using the example of the limb solar flare that occurred
on July 17th, 1981. The observed spectra were captured
on the photoplates with the Echelle spectrograph of the
Horizontal Solar Telescope by N.I. Lozitska, V.G. Lozit-
sky, and P.M. Polupan [5] and present important insights
into the nature of the magnetic fields associated with so-
lar flares [4, 5, 33]. The challenge with these spectra is
that they are one-of-a-kind measurements and can only
be recorded once, therefore it is crucial to obtain the
most accurate results from processing them.

Figure 1,a shows a portion of the 8:33 UT photoplate
where bright emissions in 3 spectral lines (Hβ, Hγ, Hδ)
can be seen. The Figure captures the spectrum in 13
diffraction orders, each order being represented by a pair
of horizontal stripes corresponding to two circular polar-
izations (the cross-dispersion mechanism of the Echelle
spectrograph is discussed in more detail in [35]). Within
each stripe, the wavelength increases toward the right,
and the height above the photosphere increases down-
ward. It should once again be emphasized that different
stripes correspond to different diffraction orders of the
spectrograph, meaning that there is no continuous height
or wavelength scale across the entire photoplate.

Figure 1,b presents an enlarged portion of Fig. 1,a,
showing the details of the spectrum near the Hγ line
in two circular polarizations obtained using the trans-
missive scanning technique. The local height and wave-
length scale references are marked by the vertical and

horizontal intervals, respectively. Figure 1,c shows the
same portion of the spectrogram as Fig. 1,b, but ob-
tained using a reflective scanning. The entrance slit of
the spectrograph was positioned in such a way that it
captured a part of the solar limb (for more details see
[4]). Consequently, the upper portions of each stripe cor-
respond to the continuous spectrum of the photosphere
with Fraunhofer absorption lines. On the other hand, the
lower portions of each stripe correspond to the chromo-
sphere and lower corona, where emission in only a few
selected lines is present.

Fig. 1. Spectral images used as inputs for the neural net-
works. A portion of a photoplate featuring bright emissions
in three spectral lines (Hβ, Hγ, Hδ), represented by pairs of
bright spots corresponding to opposite circular polarizations
(a). The input data for the study included high-resolution re-
flective (c) and transmissive (b) scans of eight spectral lines.
The wavelengths increase toward the right, while the height
above the photosphere increases downward. While transmis-
sive scans are known for their accuracy, reflective scans may
contain additional reflections that cause a blurred and shifted

“halo” in the spectrogram.

The training dataset consisted of high-resolution re-
flective and transmissive scans of 8 spectral lines. These
images had the same resolution, but were of significantly
different sizes, with the average dimensions being ap-
proximately 1000 by 1000 pixels. All images are grayscale
and are represented as 2D arrays with values between 0
(black) and 1 (white). The data corresponds to scans of 4
photoplates that capture 8:17 UT, 8:33 UT, 9:02 UT and
9:51 UT moments of time, respectively. The photoplates
are of the same type — WP1. The test set consisted of
the Hγ line at 8:33 UT and Hβ line at 9:51 UT. The expo-
sures were different for each moment, ranging within 10–
30 seconds. However, the exposure times were selected
specifically to account for the different brightness of the
flare as it evolves, to ensure that the blackening of the
photoemulsion is within the most reliable range of its
characteristic curve. Therefore, in the resulting scans of
the spectrograms, the brightness ranges are similar for
all used material. Transmissive scans (Fig. 1,b) have
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been extensively verified to have good accuracy com-
pared to traditional photometers. On the other hand,
reflective scans (Fig. 1,c) of the same photoplate often
contain defects such as additional reflections, which re-
sult in a blurred and shifted “halo” in the spectrogram.
Nevertheless, in this study we show that reflective scans
can still provide additional insights for processing trans-
missive scans.

III. NEURAL NETWORK DESIGN

To tackle these challenges, Convolutional Neural Net-
works (CNNs) were used to perform the transforma-
tion of spectra between reflective and transmissive scans.
The CNN was implemented in Python using the Py-
Torch deep learning framework, with GPU acceleration
provided by CUDA. During the training process, the
CNNs were instructed to learn the relationship between
the two types of scans and perform the transforma-
tions in both directions (“reflective-to-transmissive” and

“transmissive-to-reflective” models). CNNs were chosen
to be used for this task as they have proven to be effective
in image processing and can learn to capture the underly-
ing patterns in the data with a relatively low probability
of overfitting [34].

When designing the neural networks (Fig. 2), various
aspects were considered to ensure optimal performance.
After visually examining the input and target data, it
was determined that it would be beneficial to introduce
two separate streams in each model. This decision was
based on the observation that the reflective scan is es-
sentially a combination of the transmissive scan and a
smoothed version of the same transmissive scan that has
been shifted. Since the “transmissive-to-reflective” model
(Fig. 2,a) is much more straightforward (adding a “halo”
is easier than removing it), the shift block was explicitly
included in one of the streams, which allowed for a sig-
nificant decrease in kernel sizes, resulting in much bet-
ter performance. In contrast, “reflective-to-transmissive”
model (Fig. 2,b) is more complicated, and the explicit ad-
dition of the shift block showed almost no effect, there-
fore the choice to stick with large convolution kernels was
made.

Fig. 2. Neural Network Architectures for converting between reflective and transmissive spectra scans. Architecture of the
“transmissive-to-reflective” model (a) and architecture of the “reflective-to-transmissive” model (b). To optimize the perfor-
mance of the neural network, each model was constructed using two separate streams: one for reproducing the spectrum itself,
and the other for adding or removing the halo. By explicitly adding the shift block, the kernel sizes could be decreased and

performance in the “transmissive-to-reflective” model improved

All convolutions were used with the padding mode set
to repeat the nearest values, and the padding sizes were
selected for each kernel in the way that retained the input

image size. The kernel sizes were 5 by 5 for convolutions
1 and 3, 30 by 30 for convolution 2, and 60 by 60 for
convolution 4. Each convolution had 15 channels, and no

1903-3
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stride or dilation were used.
The shift block is a 2-parameter transformation that

shifts the image horizontally and vertically by sx and
sy pixels, respectively. The shifts can be non-integer, in
which case the bilinear interpolation is used to account
for sub-pixel shifts. The implementation of the shift block
and its gradient backward propagation function were cre-
ated from scratch, however it should be noted that a par-
tial affine transformation could have been used instead
without noticeable difference.

Multiple pointwise operations blocks were added to the
models, consisting of nonlinearities alternated with lin-
ear transformations, to allow for learning a significantly
nonlinear intensity relation between differently scanned
spectra. Specifically, the pointwise blocks were imple-
mented as chained sigmoids and linear transformations:

⃝5
i=1λx.σ(aix+ bi), (1)

where ⃝ denotes the functional composition operator,
λ is the lambda abstraction operator, σ is the sigmoid
function, ai and bi are learnable model parameters, i =
1..5. These pointwise blocks therefore play the role of
tunable activation layers.

Since the “halo” in the reflective scans is smooth and
lacks details, the Convolutions 2 and 4 (Fig. 2) were
wrapped in a 2x downsampling-upsampling pair, which
drastically improved the computation time. For aggrega-
tion, the values of the stream outputs were simply added
together. It should be noted that we do not assume any
specific model for the halo, but rather allow the CNNs
to capture the relevant patterns.

The pixelwise loss has been defined as the square of
the pixel-wise differences between the output and target
images:

Li,j = (oi,j − ti,j)
2, (2)

where Li,j is the pixelwise loss at the location (i, j), oi,j
and ti,j are the output and target intensities at the same
location. The pixelwise loss, similar to the input, output,
and target, has values between 0 and 1. The total loss is
defined as the Root Mean Square loss with a correction
for possible outliers:

L =
√

⟨bottom 99.9% of Li,j⟩. (3)

In this expression, 0.1% of the pixels with the highest
pixelwise loss values are not taken into account. This
correction was made to allow the models to focus on the
uncontaminated parts of the images, which are repre-
sented by the absolute majority of pixels, and ignore the
outliers that are caused by spectral contamination such
as scratches and dust particles.

As regards of the optimization algorithm, various op-
tions were considered, such as Stochastic Gradient De-
scent (SGD), Adaptive Moment Estimation (Adam), and
Resilient Propagation (RProp). Through a series of tests
and evaluations, it was found that alternation between
the RProp and Adam algorithms every 10 000 epochs
worked best [36, 37]. The optimal values of the neural

network parameters were obtained through extensive ex-
periments and used to design the final network architec-
ture. It should be noted that the design of the mod-
els significantly limits the likelihood of overfitting due
to the usage of CNNs with kernels much smaller than
the image sizes. Keeping this in mind, we changed the
procedure from the typical train→validate→test in fa-
vor of optimize model→train→test, which is similar to
the progressive validation approach [38]. The first stage
was model architecture optimization. During this stage,
different hyperparameters of the model (such as kernel
sizes, dilations, shift layer, downsamping, etc.) were var-
ied and assessed based on relatively short model training
sessions. Next, the model was trained using a single ex-
tensive run of 200 000 epochs. Finally, the performance
of the model was assessed using the test set.

IV. RESULTS

When comparing the results of the transformation
with the target data, it was evident that the CNN
was able to match the target data with high accuracy,
both in terms of intensity and positional information
of the spectral features. Figure 3 presents the perfor-
mance of the “transmissive-to-reflective” and “reflective-
to-transmissive” models on the Hγ line at 8:33 UT,
which belongs to the testing set. The Figure includes the
target scans (a and d), model outputs (b and e), and
the output of the reversed “transmissive-to-reflective”
model (f). The pitch-black pixelwise loss Li,j (c) indi-
cates a good match between the output and the tar-
get, with the typical total loss L being around 1% for
the “reflective-to-transmissive” model and less than 0.5%
for the “transmissive-to-reflective” model. This demon-
strates the ability of the model to accurately convert
the spectra scans from transmissive to reflective and vice
versa.

When converting from reflective to transmissive scans,
there are two different approaches to consider: learning to
transform directly from reflective to transmissive scans
(Fig. 3,e) or first training a “transmissive-to-reflective”
model and then reversing it (Fig. 3,f). The study has re-
vealed that the latter approach, involving first learning to
convert from transmissive to reflective scans and then re-
versing the network, results in significantly lower compu-
tation times compared to directly learning to transform
from reflective to transmissive scans, while maintaining
a similar overall accuracy.

Figure 4 presents the comparison of the Stokes I +
V profiles obtained at the heights of 0–2 Mm above
the photosphere from the model outputs presented in
Fig. 3,e,f, and the target data (Fig. 3,d). The Stokes
I + V profiles are the intensity profiles correspond-
ing to the upper stripes within the spectral images.
Both the “reflective-to-transmissive” and the reversed
“transmissive-to-reflective” models exhibit an excellent
agreement with the target transmissive profile, preser-
ving all its distinct features.
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Fig. 3. Results of training: “transmissive-to-reflective” model target (reflective scan) (a), output (b), the corresponding pixelwise
loss Li,j (c), “reflective-to-transmissive” model target (d), “reflective-to-transmissive” model output (e), and output of the

reversed “transmissive-to-reflective” model (d)

Fig. 4. Wavelength dependencies of the Stokes I + V parameter obtained from the data on Fig. 3,d, e and f at the height of
0–2 Mm above the photosphere. Despite different digitization techniques used, the resulting profiles match well

Figure 5 provides a visual representation of the CNN
models’ performance when dealing with contaminated
spectra of the Hβ line at 9:51 UT, belonging to the test-
ing set. The figure shows the input to the model (a), the
target (b), and it’s enlarged fragment (c). The output
(d) matches the target well, which is evident from the
intensity-normalized loss (e). To inspect the loss more
closely, an enlarged view of the same area is presented
in Fig. 5,f. By examining Fig. 5,c and f, it is possible to
observe that the locations with high loss values indicate
the presence of impurities.
Enlarged and 10 times intensity-amplified image of the

pixelwise loss is presented in Appendix A, Fig. A1. Under
such amplification, the dust particles and other impuri-
ties manifest as bright spots, while the barely noticeable

smooth noise variations in the background correspond to
the imperfections of the transformation from the trans-
missive to the reflective scans. Figure A2 features the
same pixelwise loss, but with even stronger 40-times am-
plification. The smooth contours of the spectra now be-
come apparent, suggesting that the model had the worst
performance near the areas of fast intensity variation.
Additionally, an interesting phenomenon emerges: a long
particle, marked with the yellow arrows, appears twice in
the pixelwise loss. This is due to the fact that this particle
has shifted between the moments when the transmissive
and reflective scans were taken. This particle therefore
appears in different locations in the transmissive and re-
flective scans, resulting in two imprints in the pixelwise
loss. The imprint on the right, which relates to the trans-
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missive scan, has a low pixelwise loss magnitude, likely
due to the impact of the high-intensity halo in the same
location.

By introducing a threshold for the pixelwise loss mag-

nitude, such as Li,j/max(Li,j) = 0.025, the spectral
contaminations become clearly separated (Appendix A,
Fig. A3). This allows us to automatically determine the
contaminated locations.

Fig. 5. Visual representation of the models’ performance on spectra with impurities or contamination. The figure shows model’s
input (a), target (b), its enlarged fragment (c), model output in panel (d), the intensity-normalized pixelwise loss Li,j/max(Li,j)
in panel (e), and an enlarged view of the intensity-normalized pixelwise loss of the same area (f). By comparing the panels (c)
and (f), it becomes apparent that the areas of high loss correspond to the impurities on the spectral images. This allows to

reliably detect and exclude such impurities from the spectra during post-processing

In order to assess the quality of automatic noise de-
tection, a comparison with manual detection was per-
formed. At present, the primary method used to remove
the spectral contamination from the solar spectrograms
involves a careful manual inspection of both the scans
of the spectrograms and the spectrograms themselves,
and marking the locations of the features that should be
removed. This procedure was performed with the reflec-
tive and transmissive scans of the Hβ line scans at 9:51
UT (Appendix A, Figs. A4 and A5, respectively), where
the manually detected locations of contamination were
marked by red and blue rectangles, respectively. Next,
the locations of the manually detected impurities were
compared to the locations of the above-threshold pixel-
wise loss (Appendix A, Fig. A6) by overlaying Figs. A3,
A4, and A5. In Fig. A6, the locations of the particles de-
tected manually in reflective and transmissive scans are
marked with red and blue solid rectangles, respectively.
The rectangles within which no above-threshold pixel-
wise loss is present are marked with yellow crosses. Sev-
eral locations had above-threshold pixelwise loss, but did
not correspond to the locations where the particles were
initially manually identified. Such locations were then
once again carefully inspected in the original scans, and
the presence of contamination was confirmed in either
reflective or transmissive scan, as marked with dashed
red and blue rectangles, respectively.

Overall, out of 50 distinct locations of above-threshold
loss, 30 locations were detected manually. The other
20 locations were not detected initially, but each one
was confirmed to be correct post-factum. Out of 38 dis-
tinct manually detected features, 8 were not present
in Fig. A3, as marked by yellow crosses in Fig. A6.

Nevertheless, these features are present in Fig. A2, al-
though with an insufficient intensity to pass the thresh-
old. Therefore, reducing the threshold value may lead to
even better performance, but fine-tuning the automatic
noise detection is outside the scope of this study.

V. DISCUSSION

The models have shown the ability to convert between
the reflective and transmissive scans of solar spectro-
grams. While the dataset contained a limited number of
image pairs (8 for training and 2 for testing), it should
be noted that each image contains a significant num-
ber of independent areas. Indeed, the pixels that are
far enough from a selected pixel do not contribute to
the output due to the limited kernel sizes. For example,
the “transmissive-to-reflective” model, given the Convo-
lution 2 kernel size of 30 pixels, downsampling of 2 times,
and vertical shift of approximately 40 pixels, has a sen-
sitivity window of approximately 60 by 100 pixels. This
means that a single 900 by 1000 pixels image can be
cropped into 150 completely independent samples, and
this number can be increased even further by allowing
for partial overlap, since the contribution of pixels dimin-
ishes near the edges of the sensitivity window. However,
due to the nature of convolutions, such explicit cropping
is unnecessary, especially considering the increased effect
of padding near the edges of the images.

Several notes should be made about the optimize
model→train→test procedure used. Such an approach is
rarely used because it is often deemed unfeasible due
to the typically high likelihood of a poor model perfor-
mance on the test set due to overfitting. However, it was
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observed that the proposed models are not prone to over-
fitting even when learning on a single image. This allowed
us to significantly expedite the model architecture op-
timization step, and also to use a higher percentage of
available data for actual learning. In the end, the test set
showed acceptable performance with no signs of overfit-
ting, therefore completely justifying the chosen approach
in this specific case.

Fig. 6. Restoration of spectral line profiles with impurities.
The inset shows the corresponding portion of the spectral im-
age. The exclusion of contaminated pixels, as detected by the
Convolutional Neural Network, allows for the reliable restora-
tion of spectral line profiles. This process preserves the max-
imum amount of original data and avoids the introduction of

unnecessary assumptions

During spectral analysis, the data is typically sliced
into spectral line profiles corresponding to different posi-
tions in space. This approach enables the utilization of a
wide array of tools for profile processing, facilitating ac-
curate measurements of physical quantities such as mag-
netic fields, temperatures, turbulent velocities, and so
forth. Fig. 4 demonstrates that the Convolutional Neu-
ral Networks accurately maintain all main characteris-
tics of the spectral profile, including positions, heights,
widths, and specific shape features of both the emissive
and absorptive peaks.

When the models are applied to spectra containing
impurities or contamination (Fig. 5), interesting results
emerge. The models appear proficient in reproducing pix-
els that represent the true darkness of the photoemulsion,
which make up the majority of the pixels. This leads to
very low loss for pixels representing the correct darkness
of the photoemulsion, but very high loss for scratches
and impurities. This can be used for automatic identifi-
cation of the scratches, dust particles, and other impuri-
ties from the final spectrogram scans, ensuring that the
data used for analysis is free from interference. Addition-
ally, the use of reflective scans allows for the detection of
impurities that may be hard to identify using transmis-
sive scans alone, as the difference in the relationship be-
tween transmissive and reflective scans causes impurities

to stand out more prominently (Appendix A). Introduc-
ing a threshold for the pixelwise loss allows us to con-
veniently separate all contamination. While assessments
made using a single image are insufficient for definitive
statistical conclusions, the highlighted approach for au-
tomatic noise detection is clearly promising.

Next, we will introduce a protocol for restoring con-
taminated spectral intensity profiles. Obtaining intensity
profiles from spectral images involves a two-step process.
The spectral images are first carefully divided into thin
strips, each representing a distinct photometric section.
This division allows scientists to methodically study dif-
ferent sections of the spectral image in a detailed man-
ner. Once divided, the next step involves deriving inten-
sity profiles by averaging values across the height of each
strip. During this process, contaminated pixels, identi-
fied using Convolutional Neural Networks, are excluded
from the averaging process (Fig. 6).

This technique provides a robust and reliable approach
to restoring profile shapes. It avoids unnecessary assump-
tions and data loss typically associated with simpler
methods, such as invalidating entire profile segments and
then interpolating the data. The proposed procedure for
removing spectral contamination focuses on making the
best use of the original data, and as such, delivers more
accurate and trustworthy results.

VI. CONCLUSIONS

This study presents a machine learning-based ap-
proach that introduces a new technique for processing
solar spectrograms. Central to our method is the trans-
formation between solar spectra that have been digitized
using different scanning techniques. This transformation
increases the proportion of analyzable data within cap-
tured spectra, enabling, in certain instances, the process-
ing of a greater number of spectral lines in the spectro-
gram.

Furthermore, we introduce a protocol for automatic
impurity detection and removal. By performing an au-
tomatic comparison of the differently digitized spectra,
impurities emerge as areas with high loss. These areas
can then be excluded from the images, and the spectral
line profiles restored through weighted averaging.

The practicality of our approach is underscored by its
successful application to the spectrograms of the solar
flare on July 17th, 1981, where notable impurities were
efficiently identified and eliminated. While our method
is specifically designed for solar spectra, its potential ex-
tends to broader applications in general spectroscopy.
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APPENDIX A

Fig. A1. Same as in Fig. 5,e, but the brightness in this Figure corresponds to 10Li,j/max(Li,j), capped at 1. At such
pixelwise loss amplification, the dust particles and scratches are clearly visible, and smooth contours of the spectral emission

are noticeable in the background

Fig. A2. Same as in Fig. A1, but the brightness in this Figure corresponds to 40Li,j/max(Li,j), capped at 1. Yellow arrows
indicate the locations where the shifted dust particle is manifested in the pixelwise loss
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Fig. A3. Same as in Fig. A1, but the brightness in this Figure is 1 if 10Li,j/max(Li,j) > 0.25, and 0 otherwise. Introducing
the threshold value allows to definitively locate the impurities on the spectrogram

Fig. A4. Same as in Fig. 5,b. The red rectangles show the location of the visible contamination features, which were selected
manually according to the standard spectral processing procedure
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Fig. A5. Same as in Fig. 5,a. The blue rectangles show the location of the visible contamination features, which were selected
manually according to the standard spectral processing procedure

Fig. A6. Locations of the manually detected features from Figures A4 and A5 overlaid on Fig. A3. Solid rectangles denote the
features detected manually. Dotted rectangles show the contaminations that were not initially detected manually, but were
verified post-factum. Rectangles marked by yellow crosses correspond to the locations where the manually detected features
do not appear in Fig. A3; each of these features are present in Fig. A1, although with pixelwise loss values not high enough

to pass the threshold
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ìàøèííå íàâ÷àííÿ ìîæíà åôåêòèâíî âèêîðèñòîâóâàòè äëÿ ïåðåòâîðåííÿ ìiæ ïî-ðiçíîìó îöèôðîâà-
íèìè ñïåêòðàìè, âiäíîâëåííÿ óíiêàëüíèõ åêñïåðèìåíòàëüíèõ äàíèõ é î÷èùåííÿ ñïåêòðà. Çîêðåìà,
áóëè ðîçðîáëåíi çãîðòêîâi íåéðîííi ìåðåæi äëÿ ïåðåòâîðåííÿ ìiæ çîáðàæåííÿìè ñïåêòðîãðàì ñî-
íÿ÷íîãî ñïàëàõó, îòðèìàíèìè ñêàíóâàííÿì íà ïðîñâiò òà íà âiäáèòòÿ. Çàïðîïîíîâàíèé ïiäõiä ìîæå
áóòè çðó÷íèì ìåòîäîì îáðîáêè ñïåêòðîãðàì óíiêàëüíèõ ñîíÿ÷íèõ ïîäié, çîêðåìà çáiëüøóþ÷è ÷àñ-
òêó äiëÿíîê ñïåêòðiâ, ÿêi ìîæíà áóäå âèêîðèñòàòè äëÿ ïîäàëüøîãî àíàëiçó. Öå äàñòü çìîãó â íàñòó-
ïíèõ äîñëiäæåííÿõ âêëþ÷èòè äî àíàëiçó äàíi, íàïðèêëàä, äiëÿíêè ñïåêòðiâ, ðîçòàøîâàíi áëèçüêî
äî êðà¨â ñïåêòðîãðàì, ùî ðàíiøå íå ìîãëè áóòè íàäiéíî îïðàöüîâàíèìè ÷åðåç òåõíi÷íi îáìåæåííÿ
äîñòóïíèõ ìåòîäiâ îáðîáêè. Ó ïiäñóìêó öå çáiëüøèòü êiëüêiñòü äîñëiäæóâàíèõ ñïåêòðàëüíèõ ëiíié
äëÿ ïåâíèõ ñïîñòåðåæóâàíèõ ïîäié, ùî ¹ íàäçâè÷àéíî âàæëèâèì äëÿ ïîáóäîâè ôiçè÷íèõ ìîäåëåé,
îñêiëüêè ñïåêòðàëüíi îñîáëèâîñòi ïðîÿâëÿþòüñÿ ñèíõðîííî â ðiçíèõ ñïåêòðàëüíèõ ëiíiÿõ.

Òàêîæ ðîçðîáëåíî ïðîòîêîë äëÿ âèÿâëåííÿ òà óñóíåííÿ íåäîëiêiâ i ïîøêîäæåíü íà ñïåêòðîãðà-
ìàõ. Çàçâè÷àé, êîæíà îêðåìà îñîáëèâiñòü ó ñïåêòði ìàëà áóòè ïåðåâiðåíà âðó÷íó, ùîá óïåâíèòèñÿ
â ¨¨ àâòåíòè÷íîñòi é âèêëþ÷èòè ¨¨ ç ðîçãëÿäó, ÿêùî öå ïîøêîäæåííÿ, ïîäðÿïèíà àáî ÷àñòèíêà ïè-
ëó. Çàñòîñîâóþ÷è çàïðîïîíîâàíèé ïðîòîêîë äëÿ îáðîáêè ñïåêòðîãðàì, ÿêèé âêëþ÷à¹ ñêàíóâàííÿ
ñïåêòðîãðàìè çà äîïîìîãîþ êiëüêîõ ïðèíöèïîâî ðiçíèõ ìåòîäiâ, à ïîòiì âèêîðèñòàííÿ ìàøèííîãî
íàâ÷àííÿ äëÿ ïîðiâíÿííÿ îòðèìàíèõ çîáðàæåíü, âèêëþ÷åííÿ äîìiøîê ìîæíà àâòîìàòèçóâàòè. Âiä-
òàê âiäáóâà¹òüñÿ âiäíîâëåííÿ âiäïîâiäíî¨ äiëÿíêè ñïåêòðàëüíî¨ êðèâî¨, ùî äà¹ çìîãó ìàêñèìiçóâàòè
âiäñîòîê íàÿâíèõ ñïîñòåðåæåíèõ äàíèõ, âèêîðèñòîâóâàíèõ äëÿ ïîäàëüøîãî àíàëiçó.

Êëþ÷îâi ñëîâà: ñïåêòðè ñîíÿ÷íèõ ñïàëàõiâ, îáðîáêà àñòðîíîìi÷íèõ çîáðàæåíü, îá÷èñëåííÿ íà
ãðàôi÷íèõ ïðîöåñîðàõ, àíàëiç àñòðîíîìi÷íèõ äàíèõ, ñïåêòðîñêîïiÿ.
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